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1. Statement of Problem 

The use of SCUD missiles by the Iraqis in the 
1991 Gulf War signaled the emergence of a new threat 
against which current U.S. defenses are limited. One 
message from the Gulf War is that defending ports, 
strategic off-load air fields, marshaling areas, and 
population centers against Theater Ballistic Missiles 
(TBM) will be of mounting concern in future conflicts. 
The Ballistic Missile Defense Organization (BMDO), in 
conjunction with the military services, is currently 
evaluating various Theater Ballistic Missile Defense 
(TBMD) systems to defend critical friendly assets (called 
targets in this paper) against current and projected short 
range, medium range, and long range TBMs. The cost for 
defending these assets depends on the number and type of 
threat TBMs that emerge, and the mix of defensive 
missiles arrayed against them. 

There are several problems associated with 
designing the most cost-effective mix of TBMD systems. 
First, the time needed to deploy all systems relative to the 
warning time available is uncertain. Second, even if 
enemy TBM inventories are known (and there is some 
uncertainty here, especially in projected forces), the 
targeting strategy may be unknown. We don't know, for 
example, precisely what mix of short, medium, and long 
range TBMs will be used against a particular target. How 
then, in the face of such uncertainties, can we plan to 
acquire reasonable defenses in the most cost-effective 
way? 

In this paper we develop the first steps of an 
approach to determine the TBMD architecture that 
minimizes cost or maximizes effectiveness. This 
approach is based on a statistical theory of enemy attack 
and TBMD strategies, and employs the general formalism 
used earlier by one of us ( Kohlberg 1980) [ 1] for a very 
different problem in nuclear C3 survivability. Addressing 
the issue of TBMD cost-effectiveness is particularly 
relevant   since   near-term   decisions   must   be   made 

regarding the choice of different systems against the 
threat(s). 

It is useful to consider the nature of the threat. 
A summary of the threat is shown in Table I. Each of 
these missile types may have various types of warheads. 
In the simplest case, these warheads would be unitary 
high explosives (HE), while in more sophisticated cases 
some could use submunitions, and weapons of mass 
destruction (WMD): nuclear, chemical, or biological 
weapons. The importance of destroying a missile will be 
a function of its warhead type. Thus, the formalism to be 
described in this paper permits assigning values to TBMs 
according to the likelihood of the use of WMDs. 

Table I. Illustrative TBM Threat 

Type Apogee (km) Range (km) 
short - range 

medium - range 

long - range 

below 35 

between 35 and 
125 
above 125 

less than 150 km 

between 150 and 500 km 

over 500 km 

To counter the threat array shown in Table I the 
Army and Navy each have proposed a set of lower tier 
and upper tier defensive systems. The Army's lower tier 
system is called PAC-3 and its upper tier system is called 
Theater High Altitude Area Defense (THAAD); the 
Navy's lower and upper tier systems are called Navy Area 
Defense (NAD) and Navy Theater-Wide (NTW) Defense, 
respectively. Table II shows the types of threat missiles 
the different systems are optimized to interdict. 

The TBMD systems are designed for different 
purposes. The PAC-3 and NAD systems defend the 
region within a few tens of kilometers around a single 
target against short- and medium-range missiles, while 
the THAAD or NTW could protect multiple assets over a 
much larger region from medium- or long-range TBMs. 
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Table II. Engagement Capabilities of Defensive 
Systems Compared with Threat 

TBMD System Threat Range 
PAC-3 short, medium 

NAD short, medium 

THAAD medium, long 

NTW medium, long 

There are an enormous number of possible 
scenarios that could be proposed when we take into 
account: the mixture of TBMs against a selected set of 
targets, warning time for TBMD deployment, time for the 
TBMs to reach the intended targets, detection points and 
times for incoming TBMs, firing rates of missiles 
(offensive and defense), battle management concepts of 
operations, probability of kill for each pair of 
TBM/TBMD, etc. Each possible scenario will lead to a 
different outcome in effectiveness. 

Cost is usually measured as the life cycle cost: 
the remaining research and development (R&D) and other 
start-up costs, the costs for procuring all the missiles in 
the inventory, and costs associated with 20 years of 
operations and maintenance. Table III shows the 
approximate inventory objectives of the four systems just 
mentioned and the approximate 20-year life cycle cost 
and average cost per missile. 

Table III. Illustrative Inventory and Life Cycle Cost 

TBMD 
System 

Objective 
Inventory 

20-year Life 
Cycle Cost 
(Constant 
FY 96 $B) 

Per Missile 
Cost 
($M) 

PAC-3 1200 6 2 

NAD 1500 6 2 

THAAD 1300 15 6 

NTW 600 7 6 

To formulate the minimum cost algorithm in 
Section 2, we need the analytical relationship between 
the life cycle cost for each system and the number of 
missiles produced. If "i" denotes a member of the set of 
4 defensive systems (i = 1, 2, 3,4 ), the cost, Cj, will be a 

function of the total number, Nj, of missiles ofthat type 
produced; 

q = q(Nt). (l.i) 

Cj increases as Nj increases, but we expect the cost per 
missile, 

aj = dCj/dNj    , (1.2) 

to decrease along a production learning curve as  Nj 
increases. 

2. Theoretical Approach for TBMD 

Starting with scenario-generated results of the 
outcome of engagement analysis, we show: (1) how to 
minimize the system cost to achieve a desired outcome, or 
(2) how to maximize the effectiveness of a complex of 
missile systems if the overall cost is fixed. The treatment 
in this paper is general and follows the theoretical 
methodology [1] used in other optimization analyses. It is 
beyond our purpose to recommend at this time the most 
desirable mixture of TBMD systems for specific 
situations without additional computations based on the 
theoretical approach developed here. 

The approach places no a prori restrictions on 
the outcome of individual engagements, and can 
automatically decide whether a specific defensive system 
should be completely deleted from the inventory (that is, 
it can answer the question as to whether any one or more 
of the four systems identified in Table II should not be 
built). 

As indicated in Section 1, there are a large 
number of variables in this problem which can all be 
incorporated into the mathematical framework. However, 
for the purpose of explaining the approach we shall limit 
the explicit notation to the threat, targets, and defensive 
systems. The following variables are now identified: 

JJ) 

™0) 
mk 

number   of  defensive   missiles   of  type 

"i " allocated to defend target 
j (where i = 1 to 4; for example, PAC-3 
corresponds to /' =1), 

number of threat missiles of type "k" 

impinging on target j (k = 1 to 3; for 

example, k = 1 corresponds to short range 



missiles), 

L = total number of targets (e.g., defended assets), 

Nj =  X rij      =    total     number     of     type      i 

7=1 
defensive       missiles       required 
for defense of L targets. 

Using these definitions it is possible to construct 

a scenario for target j consisting of AWj    , m^ , m^ 

threat missiles and «j    , n^ , «3   , «4     defensive 

missiles. For brevity, we now introduce the set notation 

m U) =   im IJ) , m 2
( J) , m 3

( J) \    , (2.1) 

nU) =  [n[J) ,n(
2
J) ,n\J) ,n\J)}       .(2.2) 

The total number of TBMs fired at the y'th 
target is 

M01 = z my\ (2.3) 
k=\ 

Once the details of the engagement are defined 
(this will include the specifics of the incoming trajectory, 
probabilities of identification/discrimination, probabilities 
of kill for each offensive/defensive pair, firing rates, etc.) 
we can compute the number of offensive missiles getting 
through. For simplicity in this paper we make no 
distinction in effectiveness between short, intermediate, 
or long range TBMs. Accordingly we define 

P U ) (m  ( j } , n ( J } ) 

as the scenario kill probability for M^   missiles fired at 

the jth target in a composite of m^', n^' sets of 
offensive and defensive missiles. The number of missiles 
that get through at the j th target is 

M (
T
j) = M U) (l - P U) (m U), n U) )).   (2.4) 

It is readily appreciated that the determination of 

P^J)(m^J),fi^J)\ma realistic scenario - 

that is, one that involves numerous incoming missiles 

and   where intercepts may occur at different altitudes 
using different defensive systems, is extremely difficult to 

determine analytically, and invariably involves real-time 
simulation modeling. The explicit dependence of 

p ( J ) Lfi ( J') s ~ ( j') \ on the index uj „ indicates 

that the results may depend on the detailed nature of the 
target site itself. Otherwise 

P^J'\m  ^j',n^j'\ would be independent 

of j, and Mj   would be given by the equation 

M U)   _   M ( 
TS M U)(l- P   (fn,n    )),(2.5) 

where P\m,n) is now the site-independent kill 

probability for the sets m,h. 

p (J ) ^ ( j ) } ^ ( j ) J has the properties 

P0)((j), nU)) = l    , (a) 

P0)(m0),(|))= 0   , (b)      (2.6) 

where <|) is the null set. Beyond Eq. (2.6) it may not be 
especially meaningful to render bounding statements 
since they will depend quite strongly on the firing 
doctrine employed in the scenario. For example, in one 
case, we may find that a maximum of only two anti- 
missiles can be fired against a single threat missile, while 
in cases involving targeting by independent batteries 
more than two defensive missiles can be used against a 
single incoming threat. Essentially, we must rely on the 
information supplied by scenario calculation to provide 

the function P (j) Im (J)    z(j) n 
) 

For the purposes of this discussion it is not 
necessary to become involved in the detailed description 

of p^J ' I jn ^J'^n j,but simply to recognize 

that such a function can be computed for arbitrary 

m\J)^JfJ) jjjg practical aspects of the problem enter 
when one realizes that not all mathematical possibilities 
can be realized in the solution due to inherent constraints 
on both the availability of large numbers of TBMD 
missiles distributed over a large number of targets, and 
the intrinsic probability of TBMD/TBM kill. 

For example, if the intrinsic probability of kill,/», 
were the same for all TBMD/TBM engagements, and if 
no more than two attempts could be made against an 
individual threat missile, the effective kill probability 
would be 



Pk = P + (l-p)p=p(2-p) (2.7) 

Using   Eq.    (2.7)   and   assuming   statistical 
independence of targeting, the probability of knocking 

out all m^' threat missiles would be 

pdj)=(p(2-p)r (/) (2.8) 

Equation (2.8) shows that no amount of TBMD missiles 

allocated to protect target j  could destroy all  M^ 

incoming missiles with a probability exceeding P^Aß ■ 

For  the  example just  given,  the  maximum 
number of TBMD missiles that could be used in the 

scenario is 
be used is 

IM^ , while the average number that would 

N(J) = jJJ) 
"k (2.9) 

where nk is the average number of defense missiles fired 
at a TBM; it is 

nk=\ + (\-p)=(2-p)    . (2.10) 

By recognizing the inherent limitations of certain 
situations one can avoid seeking optimum solutions with 
unrealistic constraints. Eventually, the user of the 
optimization algorithm to be described would come to the 
realization of what is feasible, but simple calculations of 
the type just rendered limit the search space required at 
the outset. 

Suppose that we have conducted analyses for a 
sufficient number of scenarios so that we have obtained a 
suitable analytical representation of 

P *■ J ' (m  ( J ■* , n ( J ^ J .   (We assume in some 

of the formalism to follow that the elements of the set 

fty' are continuous, even though they actually are 
discrete integers. However, this is a detail that can be 
rectified in a numerical calculation.) The remaining tasks 
are to concurrently establish what we want to maximize 
or minimize within the constraints on the problem. 

Initially, we fix the total cost Cj-   We thus 
require: 

cr=zq(ivz.)=c0   , 

where CQ is a constant, and 

(2.11) 

Nt = Z n) 
i=\ 

,(/) (2.12) 

Given the constraint of Eq. (2.11) we seek to 
optimize an objective function of the engagement. Let's 
suppose, for example, that each threat missile that gets 
through is equally important, and that the objective then 
becomes the minimization of Mj, the sum of all 
incoming missiles that get through ( on the other hand, a 
different weighting scheme could be introduced here to 
preferentially deny penetration by WMDs or by any other 
type TBM). Mj is given by 

MT 

7=1 7=1 

(2.13) 

Using the method of Lagrange multipliers [3], 
we minimize the functional 

F = Mj - A,Cj (2.14) 

where X is a new variable, the Lagrange multiplier, to be 
determined by the conditions of the problem. Taking the 
variation 8F gives 

L 4 

OF = -]T MU)dPU) -X£ 5C, (N,) ,      (2.15) 
>1 i=l 

where 

dP Hw^ (2.16) 

JJ) **fo)  =   g^   =   g|   8„0<  ,2,7) 

Substituting Eqs.  (2.16) and (2.17) into Eq. 
(2.15), and setting 5F = 0 for the minimum gives 

*   =   Z     I 
iJ 

hn\h   =   0> 

(2.18) 



Following standard Lagrange multiplier 
methods, the solution of Eq. (2.18) is achieved when the 
conditions 

M0)^i+   X  ^L   =   0 (2.19) 
dn\j) 8Ni 

are satisfied for all i , j. 

If there are four possible TBDM systems (see 
Table II) and, say, 20 targets, Eq. (2.19) provides the 

solution of 80 of the unknowns, the tlj    , in terms of the 

81st unknown, X . That is, the solution of Eq. (2.19) is 
of the general form 

JU) ny   = #\x), (2.20) 

where fj     is an analytic function of X . 

Substituting Eq. (2.20) into Eq. (2.12) gives 

N,   =    Z if>   =    I    tf\x)   =  Ft(X)   , 
7=1 ;=i 

(2.21) 

where Fj(X) is another known function of A, determined 
from the summation in Eq. (2.21). Inserting Eq. (2.21) 
intoEq. (2.11) gives 

Q(ty)=q(/?(Ä,))    , (2.22) 

and ultimately 

CT=  ZCi(Fi(X))=CT(X)   .      (2.23) 
/■=1 

Since the cost, Cj, is assumed fixed, Eq. (2.23) 
can be inverted to provide 

C0 = CT(X)    , 
* * 

X =X(C0)   , 
(a) 

(b)     (2.24) 

* A 

where X   is the value of X that satisfies the equalities in 
Eq. (2.24). 

Using Eq. (2.24) in Eq. (3.20) gives the unique 

set of values, nf , that corresponds to the fixed cost, CQ 

An   =    fiU)(^* (C0 )).(2.25) 

When the mathematical calculations are carried 
out correctly we will be guaranteed to have the minimum 
number of penetrating missiles achieved at the designated 
cost. This is given by 

M 7*,min 2   MU)(l-Pü)(mü),  ^)) 

(2.26) 

A A(/) 

where n is the set of ny  . 

The analysis presented between Eqs. (2.14) to 
(2.26) is a straightforward application of Lagrange 
multiplier theory. The solution represents the most 
unrestricted case since it only involves a single constraint, 
namely that given by the fixed cost, although we 
introduce restrictions in the next paragraph. When 
applied to the TBMD domain it also allows for an 

arrangement of fir    without explicit consideration of 

whether the defensive missiles will have any difficulty in 
being available to defend the targets. All targets have 
implicitly been considered to be equally important since 
no a priori consideration has been given to selected 
threats. 

Constrained solutions are the more relevant ones 
in TBMD. Realistic applications place restrictions or 
limitations on the availability of defensive missiles, 
because of logistics, deployment constraints, limitations 
on the location of defensive batteries in the theater, and 
other factors. For example, one may envision a constraint 
that limits the maximum number of missiles of a certain 
type that may be allocated to any site. This would lead to 
the mathematical restrictions, 

n(J) < N(J) 
i    ~    j,max (2.27) 

Another possibility of the same type would be 
the constraint 

*-• ni     -Jvmax 
i=\ 

(2.28) 



a constraint that restricts the total number of defensive 
systems available to defend a particular target. Other 
availability constraints can be invoked. 

In addition to the constraints of Eqs. (2.27) and 
(2.28) one may attach relative importance to selected 
targets, such as population centers, or critical military 
facilities. Those would be expressed in the form 

A/O") < A/O) ivi _ JV-/max. (2.29) 

Since the Lagrange multiplier solution for the 
unrestricted case is the optimum unconstrained defense, 
additional constraints are guaranteed to lead to a larger 
number of missiles that get through, when summed over 
all targets. Solution of any of these constrained inequality 
problems requires an optimization routine [e.g. 2]. 

There is one additional consideration that should 
0) be addressed; all the results for the n 

quantities that depend on n^' 

and the related 

were computed for a 

:0) specified threat laydown.   That is, the solution of n 
determined from Eq. (2.19) contains the elements of 

m     . If the threat specific specification should change, 

the method of solution would be the same but the nS** 
would be different, although also derived from a 
minimum cost principle. Thus, the final results for any 
analysis of this type should be averaged over the 
probability distribution for the threat. 

In contrast to the foregoing analysis, which 
demonstrates one particular way that a TBMD system can 
be deduced for a fixed cost, we can also use the 
formalism for finding the minimum cost, Cmjn, to 
achieve a required level of effectiveness. For illustrative 
purposes let us consider the "flip side" of the previous 
problem in which we impose the fixed system 
requirement 

MT = I Afi^-pWfirfAjW^Mo ,(2.30) 

and seek to minimize the cost 

The function to be minimized is now 

G=CT- QMT    , (2.32) 

where Q is the new Lagrange multiplier.   Taking the 
variational of Eq. (2.32) gives 

i? M w 
8C

+OM»aP 
U)\ 

dn\j) 8n U) _ 

(2.33) 

The foregoing equation is identical to Eq. (2.18) 

with the replacement of X by (l/Q). Hence the 
solution for this problem is of the form 

v-fiiä ■ (2.34) 

where the parameter Q, is determined from the equation 

I MU)^-PU)(mU\nJ\l/Q)J\=M0. (2.35) 

JJ) 
Once Q, is determined, the particular values of 

rtj"'    are   determined   from   Eq.    (2.34),    and   the 

corresponding minimum cost is computed from Eqs. 
(2.11) and (2.12), analogous to the previous procedure. 

The two similar examples just rendered have 
been presented to demonstrate the concept. In practice, 
we would most likely anticipate the introduction of 
several inequality constraints. 

3. Sample Calculations 

We have not yet applied the formalism in this 
paper to an actual problem. The purpose of this paper is 
to establish the foundations for such applications. For 
insight into some issues concerning the use of the 
methodology developed, we have analyzed three 
situations, each of which has a different result. 

CT =  I CjiNi) 

associated with the constraint M0. 

For simplicity, assume that there are only two 
(2.31) TBMD systems under consideration, called A and B. 

These might be the PAC-3 and NAD systems. 
Moreover, we assume that these two systems have the 
same probability-of-kill against all TBMs that would be 
aimed at the targets they protect. 



Where they differ is: (1) availability in the 
theater at the time attacks begin, (2) cost, and (3) access 
to and coverage of the region immediately surrounding 
some of the targets. Availability in the theater reflects the 
possibility that some types of TBMD systems are more 
readily transported to a given theater than another. In the 
absence of prepositioning or early deployments, land- 
based TBMD defenses might not be as available in the 
numbers needed for full protection of targets as would 
ship-based TBMD systems. Cost differences in 
acquisition and O&S are to be expected between two 
different TBMD systems. And, despite availability in the 
theater, one of the TBMD systems might be limited by 
location from covering targets the other could protect. 
For example, short-range ship-board TBMD systems may 
not be able to protect targets deep inland. 

We examine three different situations. For 
illustration purposes, we use the linear relationship 
between cost and number of missiles: 

ct Coi + aiNi (3.1) 

where Coi is a fixed cost and az- is a constant. For 
example, application of Eq. (3.1) to Table III gives 
C0 = $3.6 B and a = $2.0 M for PAC-3. For NAD, CQ 

= $3.0B anda = $2.0 M. 

These three different cases we examine are 
summarized in Table IV, and characterized more 
completely in the related text. In all cases a total of M 
TBMs are fired in defense of the complex of theater 
targets. 

Table IV. Illustrative Cases for TBMD Solutions 

Case I Case II Case III 
Avail- 
ability 

A, B both 
unconstrained 

A, B both 
unconstrained 

A constrained 
to NA * ; B 
unconstrained 

Cost C0A > CoB ' 
aA = aB = a 

C-oA > C0B ; 

aA = aB = a 
C0A > C0B; 
«A = aB = a 

Coverage 
of 
Targets 

A, B can 
defend 
all targets 

A can defend 
all; B can 
defend 50% 

A can defend 
all; B can 
defend 50% 

For simplicity, we assume that the defenses fire 
2 TBMD missiles against each incoming TBM. Greater 
complexity can be added, as in Eq. (2.7), but at the 
expense of clarity. Thus, a total of 2M TBMD missiles 
must be in the theater. The question is: how many of 

SOLUTIONS FOR 
CASE III 

NUMBER 
OF 

MISSILES 
NA 

NUMBER OF 
MISSILES, NB 

Figure 1. Constraint Relationships for NA and NB. 

these 2M missiles are A-type missiles and how many are 
B-type missiles? The examples are chosen so that there 
are different answers to the same question, depending on 
the constraints. 

An understanding of the solution is facilitated 
and summarized with the aid of Figure 1. The ordinate is 
the number of missiles of type A, and the abscissa is the 
number of type B missiles. 

The negatively sloped line connecting the 
ordinate and the abscissa in Figure 1 is the locus of all 
points for which NA + NB = 2M. The solution to any 
of the three cases lies somewhere along this line ( or to 
the right), the exact point or points being determined by 
the specific constraints. 

There are three general solutions to the cases 
summarized in Table IV, subject to the equality constraint 

N, + NB = 2M. 

They are 

CT='CM+ aNA = C0A + a(2M) 
CT = C0B + aNB = C0B + a(2M) 

CT=C0A + C0B + a(NA+NB) 
= CQA + C0B  + a(2M) 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 



Case I. Reference to Table IV shows that this 
corresponds to a totally unconstrained solution to the 
TBMD question. Both systems A and B can be in the 
theater to the extent required. Both are equally effective, 
but the costs are different. And both systems can be 
located anywhere within the theater to protect all targets. 
Thus either alone could perform to meet defense 
requirements. The least cost solution in Case I is to buy 
only one system, the lower cost system B. This solution 
corresponds to Eq. (3.3b). 

Case II. One of the conditions in Case I is 
constrained in this case. See Table IV for the details. 
Here both A and B are available in any numbers required 
( as in Case I), except that B can be positioned, no matter 
how numerous in the theater, to protect only 50 percent of 
the targets. Thus the solution in Case I, while the least 
costly, fails to meet the requirement that all targets be 
protected with 2M missiles. The possible solutions are 
reduced to either Eq. (3.3a) or Eq.(3.3c). An examination 
of the costs in Table III shows that the least-cost solution 
here is to buy only one system, but this time system A. 
Even though A is more costly than B to develop and bring 
to the point of production (i.e. CoA > CoB), the cost of 
a single system that protects all targets is lower than a mix 
of A and B, due to the relatively large R&D costs 
associated with acquiring a second system. Thus, the 
architecture that meets requirements at lowest cost in 
Case II is the single system A, even though its cost is 
higher than that ofB. Its cost is given by Eq. (3.3a). 

Case III. This is a doubly constrained case, 
even more constrained than Case II. In Case III, as Table 
IV shows, only B can be in the theater in unconstrained 
numbers. System A is available up to a limit, a limit that 
prevents full protection of all targets to the high level 
required. This limit might be a force size constraint (there 
is a maximum number of missile batteries in the force) or 
to strategic deployment constraints ( inadequate time and 
lift assets available). Thus A alone fails to meet the 
specified requirement. On the other hand, even though B 
can be available in unlimited numbers, it is constrained as 
in Case II to defending only 50 percent of the targets. 
System B alone also fails to meet the defensive 
requirement. Thus, both A and B are constrained in some 
fashion in this case. The general solution would therefore 
be a mixed solution and lie somewhere on the darkened 
portion of the line in Figure 1. 

The expected solution here is more complex 
than for the other cases analyzed. We look separately at 
three different domains of NA*: (i) NA*<M, (ii) M < 

NA* < 2M, and (iii) 2M < NA*. The special 
conditions on A arise from the fact that B can defend only 
up to one-half the targets by expending Mmissiles. 

(i) NA* < M. If there are this few A-type 
missiles available, Figure 1 shows that there is no solution 
that meets the requirements of engaging every incoming 
TBM with 2 missiles. So, if the constraints are too 
severe, there is no solution at any cost that meets the 
requirements. New requirements would be needed to 
proceed. 

(ii) M < NA* < 2M. In this intermediate 
case, both A and B together can defend all targets. There 
exists a least cost solution that meets the requirements, 
and it is given by Eq. (3.3c). While the minimum cost is 
determined uniquely, the appropriate mix of A and B is 
not, since A and B missiles cost exactly the same to 
produce (by assumption). The architecture with equal 
numbers of A and B missiles (i.e. NA= NB= M) is just 

as effective as the one with NA* type-A missiles and 

(2M - NA* ) type-B missiles. Graphically, all the points 
on the dark line in Figure 1 are equal cost and equal 
effectiveness solutions. So, for some conditions, there 
may be many solutions that are equally cost-effective. 

(Hi) 2M < NA *. Finally, we examine a case 
outside the boundaries. If NA* had actually exceeded 2M, 
this case is identical with Case II ( except for the number 
of missiles), and the single system A architecture 
becomes preferred. So this condition is not 
fundamentally different from one already analyzed. This 
observation makes us realize that there is a discontinuity 
in the solution and the cost at NA * = 2M. When NA * is 

slightly larger than 2M, only a single system (system A) 

is the most cost-effective. When NA * is slightly less than 

2M, the combined A and B system architecture, with a 
considerably larger total cost, is the most cost-effective. 
Here we need to decide whether the requirement is more 
important than the cost. This points to the need for 
probing for discontinuity points by small excursions 
around the optimum solution point when solving much 
more complex problems by numerical means, ones in 
which the results cannot easily be guessed beforehand. 
Points of non-analytic behavior with discontinuities in 
system choices and costs can occur. 



4. Conclusions 

In summary, we have presented the basic theory, 
using Lagrange multiplier techniques, for estimating the 
most cost-effective TBMD architecture. We have shown 
by example how inequality constraints can greatly 
influence the solution. Lowest cost, highest performance, 
selective defense of designated targets, prioritized defense 
against probable WMD warheads, or any other constraint 
criterion can be introduced within its framework. This 
approach was adapted from one developed in another 
field (nuclear C survivability) where it has been used 
with great success for a number of years. 

The approach to finding the most cost-effective 
architecture is straightforward, although demanding in its 
attention to detail and ultimate extensive use of computer 
resources for realistic cases. Extensions of the 
methodology to go beyond fixed assumptions ( such as 
target selection by enemy TBMs) and to include 
distributions of the critical parameters in the theory are 
contemplated, but are not included in the present version 
of the theory. We have avoided these extensions in this 
paper, the purpose of which is to introduce the main 
outlines of the theory with a minimum of embellishments, 
rather than to develop it in its entirety. 

We have not yet applied the full theory to 
finding the most cost-effective mix of TBMD systems for 
a realistic scenario. But we have examined several simple 
cases in order to anticipate some of the difficulties to be 
expected in such an application. Despite the power of 
the approach outlined here, optimum solutions obtained 
from the formalism should be used with care. The 
solution found by an optimization algorithm may not be 
the only one of interest. Several observations on this are 
made next. 

numerical search algorithm. The exact solution found 
would depend on where in its initial guess the search 
algorithm began its search. In a more realistic case with 
many more variables and constraints, there may reside a 
range of solutions that differ insignificantly from one 
another in cost and effectiveness, but which are hard to 
discover by reasonable numerical means. Criteria other 
than the ones in the model, to include subjective and 
political ones, could then be brought to bear on selecting 
the "best" of the otherwise "equal" solutions. 

On the other hand, the solution found may be 
near one or more discontinuity points, such as the one 
also discussed in Case III in this paper. This type of 
solution, if its metastability is discovered, would probably 
require a re-examination of the conditions that initially 
constrained the solution. A small change in requirements 
could result in a dramatic change in costs for the least- 
cost solution that meets all the criteria, an area worth 
exploring. 

Finally, the use of simplified examples, such as 
those in Section 3, can serve to help us choose good first 
guesses in starting the search algorithms for the more 
general and more complex constrained realistic cases. 
Because of the large volume of space in which the search 
is to take place, a good starting point is crucial to realistic 
computer search times and convergence criteria, as noted 
in the examples studied. 
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